
IPHONE
Development Jump Start

phil nash
levelofindirection.com

http://twobluecubes.com
http://twobluecubes.com

Who?

been in a professional developer for the last 18 years
- mostly windows
- c++, c#, Java, Python etc
- then, Aug 2008, decided to write and iPhone app -> Obj-C
- three weeks later was finishing my first app...

vConqr

... in the app store since Sept 2008
- still maintaining - coming up to v2
- no subliminal advertising
- not here to talk about that/
- here to talk about iPhone dev - so what do we need?

Need?
XCode

iPhone API stack

Objective-C

A Mac

[object method1]

Mac - great machines. Well built, durable, sleek, well integrated.
XCode
iPhone APIs
Objective-C: Monotouch
 - getting very good
 - limitations - esp. debugging
 - not all bindings
 - docs, tutorials, samples
 - expensive ($400 - $1000)

Opinion polarised
? - learning hump,
 - modern features early
 - lacking some features we’ve got used to
 - or is it? ...

C# Objective-C

Linq Key-Value Coding/ Path

Extension methods Categories

Delegates Selectors

Dynamic keyword Message-passing

vs

C

Algol

CPL Simula

BCPL

B

C++

Java C# D C++0x?

Smalltalk

Objective-C

Message
passing

some code

object

method 1

method 2

method 3

Objective-C in 20 minutes

C++

object.method1()

this

Java

C#...

object

method 1

method 2

method 3

Objective-C in 20 minutes

some code

Obj-C

[object method1]

message

self

- closer look at the syntax...

[object method1]

Objective-C in 20 minutes

object method1[object method1]

Without the sq. brackets = Smalltalk
in Smalltalk: everything an object (even primitives)
 - all operations are messages
Obj-C is fusion of Smalltalk and C
 - type systems must co-exist

return a value
pass message to returned object
pass arguments
pass returned object as argument

[object method1]

Objective-C in 20 minutes

[[object method1] method2]

[object method1:7]

[object method1:[object method2]]

int i =[object method1]

Without the sq. brackets = Smalltalk
in Smalltalk: everything an object (even primitives)
 - all operations are messages
In Obj-C objects & primitives are different
- C operators are retained

return a value
pass message to returned object
pass arguments
pass returned object as argument

Objective-C in 20 minutes

[object method1:7]

[circle setCenter:100 :100]

[circle setCenterAtX:100 y:100]

circle setCenterAtX:y:

method name

closer look at arguments
how to pass more than one?
need colon - never see this in real code
label to left of colon
all labels (with colons) = method name
- how do we declare? ...

Objective-C in 20 minutes

setCenterAtX: y:(void) (float) (float)-

-(void) setCenterAtX:(float)x y:(float)y
{

// some code
}

;x y

what about memory management? ...

Memory

Objective-C in 20 minutes

Objective-C in 20 minutes

circle = [Circle alloc];

Circle* circle;

[circle init];circle =

Circle* circle = [[Circle alloc] init];

alloc, like malloc
init, returns object (may differ)
one line
factory method?
... what about parameters?

Objective-C in 20 minutes

Circle* circle = [[Circle alloc] initAtCenterX: 200 y:200];

withRadius:100];

y:200

Circle* circle = [[Circle alloc] initAtCenterX:200

[circle dealloc];

[circle release];

radius
split over lines
dealloc - implement, donʼt call
release - ref counting
... retain counts
- go over a little more...

Objective-C

retain count

in 20 minutes

[object dealloc];

Object* object = [[Object alloc] init];

[object retain];

[object release];

[object release];

1

2

1

0

- how do we create new classes? ...

Objective-C in 20 minutes

Classes

Objective-C in 20 minutes

@interface SomeClass : NSObject

{

}

@end

int x;

NSString* name;

-(NSString*) name;

-(void) setName: (NSString*) newName;

- define class with @interface
- not the same as interface
- derived from NSObject
- code block
- “blow your mind” - @end

Objective-C in 20 minutes

@interface SomeClass : NSObject

{

}

@end

int x;

NSString* name;

@property(retain) NSString* name;

- define class with @interface
- not the same as interface
- derived from NSObject
- code block
- “blow your mind” - @end

Objective-C in 20 minutes

@implementation SomeClass

@end

-(NSString*) name
{
 return name;

}

-(void) setName: (NSString*) newName
{

[newName retain];
[name release];
newName = name;

}

Objective-C in 20 minutes

@implementation SomeClass

@end

@synthesize name;

Objective-C in 20 minutes

@implementation SomeClass

@end

@synthesize name;

-(void) use
{

}

[c setName: @”elephant”];

[c release];

SomeClass* c = [[SomeClass alloc] init];

Objective-C in 20 minutes

@implementation SomeClass

@end

@synthesize name;

-(void) use
{

}

[c release];

SomeClass* c = [[SomeClass alloc] init];

c.name = @”elephant”;

Now onto the meat of the presentation...

